munkatársai, ? Benjamin Screen?"), és időben sem feltétlen különbözik a két
munkaforma, bár ebből a szempontból nagyon fontosak a fordítási helyzet jel¬
lemzői, például a szöveg típusa, a gépi fordítás outputjának minősége, a fordítás
iránya vagy az utószerkesztő egyéni preferenciái (Nora Aranberri és munkatár¬
sai,” Yangfang Jia és munkatarsai,”° Ventislav Zhechev,”’ Ana Guerberof Arenas, ?
Philipp Koehn és Ulrich Germann,” Carla Parra Escartin és Manuel Arcedillo*°).
A hibatípusokra irányuló kutatások azt mutatják, hogy bármilyen jó minőségű
az utószerkesztés, a célnyelvi szöveg magán viseli a neurális gépi fordítás nyo¬
mait: így a terminológiai pontatlanság, a szintaktikai monotónia, az interferen¬
# Yangfang Jia - Michael Carl - Xiangling Wang: How does the post-editing of neural machine
translation compare with from-scratch translation? A product and process study, The Journal
of Specialised Translation, vol. 31, 2019, 60-86.
Benjamin Screen: What effect does post-editing have on the translation product from an end¬
user’s perspective, The Journal of Specialised Translation, vol. 31, 2019/3, 133-157.
Nora Aranberri — Gorka Labaka — Arantza de Ilarraza — Kepa Sarasola: Comparison of post¬
editing productivity between professional translators and lay users, in Sharon O’Brien — Michael
Simard — Lucia Specia (eds.): Proceedings of the Third Workshop on Post-Editing Technology and
Practice, Association for Machine Translation in the Americas, 2014, 20-33.
Yangfang Jia — Michael Carl - Xiangling Wang: How does the post-editing of neural machine
translation compare with from-scratch translation? A product and process study, The Journal
of Specialised Translation, vol. 31, 2019, 60-86.
Ventislav Zhechev: Analysing the Post-Editing of Machine Translation at Autodesk, in Sharon
O’Brien - Laura Winther-Balling - Michael Carl - Miachel Simard — Lucia Specia (eds.): Post¬
editing of Machine Translation: Processes and Applications, Newcastle, Cambridge Scholars
Publishing, 2014, 2-13.
Ana Guerberof Arenas: Correlations between productivity and quality when post-editing in a
professional context, Machine Translation, vol. 28, 2014/3-4, 165-86.
Philipp Koehn - Ulrich Germann: The impact of machine translation quality on human post¬
editing, in Ulrich German — Michael Carl — Philipp Koehn — German Sanchis-Trilles — Francisco
Casacuberta — Robin Hill - Sharon O’Brien (eds.): Proceedings of the EACL 2014 Workshop on
Humans and Computer-assisted Translation, Gothenburg, Association of Computational
Linguistics, 2014, 38-46.
Carla Parra Escartin — Manuel Arcedillo: A fuzzier approach to machine translation evaluation:
A pilot study on post-editing productivity and automated metrics in commercial settings, in
Bogdan Babych — Kurt Eberle — Patrik Lambert — Reinhard Rapp — Rafael Banchs — Marta
Costa-jussä (eds): Proceedings of the Fourth Workshop on Hybrid Approaches to Translation
(HyTra), Beijing, Association of Computational Linguistics, 2015, 40-45.
Oliver Culo — Jean Nitzke: Patterns of terminological variation in post-editing and of cognate
use in machine translation in contrast to human translation, Baltic Journal of Modern Computing,
vol. 4, 2016/2, 106-114.
Michael Carl — Moritz Schaeffer: Why Translation Is Difficult: A Corpusbased Study of Non¬
literality in Post-editing and From-scratch Translation, Hermes, vol. 56, 2017, 43-57.