Direkt zum Inhalt
mobile

L'Harmattan Open Access platform

  • Suche
  • OA Kollektionen
  • L'Harmattan Archive
Deutschde
  • Englishen
  • Françaisfr
  • Magyarhu
AnmeldenRegistrieren
  • Buch Übersicht
  • Seite
  • Text
  • Metadaten
  • Clipping
Vorschau
022_000145/0000

Algorythmics: Technologically and Artistically Enhanced Computer Science Education

  • Vorschau
  • PDF
  • Zeige Metadaten
  • Permanenten Link anzeigen
Autor
Zoltán Kátai
Series
Sapientia Books. Natural Sciences
022_000145/0021
  • Buch Übersicht
  • Seite
  • Text
  • Metadaten
  • Clipping
Seite 22 [22]
  • Vorschau
  • Permanenten Link anzeigen
  • JPG
  • TIFF
  • zurück
  • Weiter
022_000145/0021

OCR

2 MULTI-SENSORY COMPUTER SCIENCE EDUCATION During our first three research studies, we focused on supporting CS education based on the principles of multi-sensory learning. In this chapter, we analyse why teaching-learning computer programming is a challenging task and why multi-sensory approaches could enhance this educational process. The methods and instruments we designed cover the following areas: loop structures, recursive algorithms, sorting strategies. 2.1 Difficulties in teaching-learning programming Since the early days of programming education, teachers have signalled problems regarding students’ programming abilities. Researchers (cognitive scientists, learning theorists, computer scientists, etc.) have identified specific difficulties related to learning to program (Mead et al., 2006). For example, du Boulay (1986) focused on identifying problematic areas and common mistakes made in them. According to Spohrer and Soloway (1986), Winslow (1996), and Soloway, Bonar, and Ehrlich (1983), most students have problems in combining algorithmic structures into programs. Navrat (1994) emphasizes the abstractness of the programming process as a possible factor contributing to students’ difficulties in learning to program. The common (disappointing) conclusions of several studies in the early 2000s were: students cannot program, trace programs, or design programs at acceptable levels (McCracken et al., 2001; Lister et al., 2004; Eckerdal, McCartney, Moström, Ratcliffe, & Zander, 2006). Another conclusion of that research period was that the problem is both long-standing and has an international character. Research on learning scientific concepts also yields insights into why understanding complex information is difficult. Many scientific domains (also including mathematics) deal with abstract concepts that students have difficulty comprehending. Mastery of these concepts requires that students build flexible and runnable mental models. Frequently, the scientific models describe phenomena for which students have no real-life referents and incorporate invisible factors and abstractions. This is particularly true in the case of learning algorithms, which is also characterized by a high-level abstractness (Dede, Salzman, Loftin, & Sprague, 1999). The following chain of ideas confirms the multiple abstract character of programming: the programming language itself can be considered as a first-level abstraction, the computer program will be the second abstraction level, and the

Strukturell

Custom

Image Metadata

Bild Breite
1949 px
Bild Höhe
2776 px
Bild Auflösung
300 px/inch
Dateigröße
1.14 MB
Permalink zum JPG
022_000145/0021.jpg
Permalink zur OCR
022_000145/0021.ocr

Links

  • L'Harmattan Könyvkiadó
  • Open Access Blog
  • Kiadványaink az MTMT-ben
  • Kiadványaink a REAL-ban
  • CrossRef Works
  • ROR ID

Contact

  • L'Harmattan Szerkesztőség
  • Kéziratleadási szabályzat
  • Peer Review Policy
  • Adatvédelmi irányelvek
  • Dokumentumtár
  • KBART lists
  • eduID Belépés

Social media

  • Facebook
  • Instagram
  • LinkedIn

L'Harmattan Open Access platform

AnmeldenRegistrieren

Benutzeranmeldung

eduId Login
Ich habe mein Passwort vergessen
  • Suche
  • OA Kollektionen
  • L'Harmattan Archive
Deutschde
  • Englishen
  • Françaisfr
  • Magyarhu