OCR
LINFINI MATHEMATIQUE EST-IL INVENTE OU DECOUVERT Disposant ainsi de deux hiérarchies d’infinis, la question qu’il se pose est: ces deux hiérarchies coincident-elles ? Le premier infini au-dessus du denombrable dans la premiere liste est le continu. Dans l’autre liste, c’est le plus petit infini non denombrable Aleph-1. Dire que ces deux infinis coïncident, c’est affirmer que tout sous-ensemble infini de l’ensemble des nombres réels, R, se met en bijection avec N, ou avec R. C'est l’Hypothèse du continu, notée HC. Cantor et bien d’autres après lui se sont interrogés pour savoir si HC est vraie ou non. La question occupera une partie de la fin de la vie de Cantor qui croyait à l'exactitude de l'hypothèse du continu. Il ne réussira malheureusement pas à en obtenir la preuve et il est possible que cet échec ait contribué à la détérioration de sa santé mentale marquant la fin de sa vie. La question est importante et constitue un test pour savoir si la théorie de l'infini de Cantor est un jeu mathématique arbitraire, ou la description d’une réalité déterminée. Si la théorie des ensembles infinis est bien la théorie d’une réalité que nous ne fixons pas nous-même, on doit pouvoir régler la question de l'hypothèse du continu de manière positive ou négative: il y a ou il n’y a pas d’ensembles infinis de taille intermédiaire entre celle de N et celle de R! Notons qu’un des adversaires de Cantor, le mathématicien Kronecker, pensait justement que les infinis hiérarchisés de Cantor sont uneillusion, ce qu’il exprima par cette phrase restée célèbre: « Dieu a créé les nombres entiers ; le reste est l’œuvre de l’homme ». Choisissez vous-même ! La question de l'hypothèse du continu fut reconnue comme centrale et David Hilbert la plaça à la tête de sa liste des 23 questions mathématiques à résoudre pour le 20° siècle, liste dont il fit l'énumération à Paris lors du Deuxième congrès international de mathématiques de 1900. Malgré cette position centrale, les progrès seront lents. Dans un premier temps, ils conduiront à des résultats qu'on interprétera le plus souvent comme des indications que l’infini de Cantor est une fiction théorique. Laxiomatisation usuelle de la theorie des ensembles est notée ZFC a partir des initiales des mathématiciens Ernst Zermelo, et Abraham Fraenkel, le C indiquant qu’on accepte l’axiome du choix. Kurt Gédel prouve en 1938 que si ZFC est non contradictoire alors ZFC+HC (ce qu’on obtient en ajoutant l’axiome affirmant V’hypothése du continu) est aussi une théorie non contradictoire. En clair: accepter HC n’introduit pas de contradictions dans ZFC.